IMPLEMENTASI ROOT MEAN SQUARE ERROR UNTUK MELAKUKAN PREDIKSI HARGA EMAS DENGAN MENGGUNAKAN ALGORITMA MULTILAYER PRECEPTRON

dc.contributor.authorLubis, Yunita Shara
dc.date.accessioned2022-07-18
dc.date.available2022-07-18
dc.date.issued2021
dc.identifier.uri https://prosiding.snastikom.com/index.php/SNASTIKOM2020/article/view/136
dc.description.abstract Multilayer Perceptron is an artificial neural network that can be used to predict gold prices. This research will produce a combination of parameters, namely the error threshold, learning rate 1 and learning rate 2 which are used in the training data process, which has quite an effect on the resulting error value. From the results of the combination of parameters and testing with the Multilayer perceptron algorithm shown in Figure 4.2, the smallest error value at layer 3 is 54262,375, which is obtained from the learning rate 1 parameter is 0.5, learning rate 2 is 1, learning rate 3 is 1.5. while the largest error value is 46023.9375. The results of the Multilayer Perceptron algorithm in forecasting gold prices can run well, which shows that the model from the implemented training and testing data can predict gold prices. Key Word : Multilayer perceptron, parameter, layer en_US
dc.language.isoenen_US
dc.publisherUniversitas Harapan Medanen_US
dc.subjectIMPLEMENTASI ROOT MEAN SQUARE MENGGUNAKAN ALGORITMA MULTILAYER PRECEPTRONen_US
dc.titleIMPLEMENTASI ROOT MEAN SQUARE ERROR UNTUK MELAKUKAN PREDIKSI HARGA EMAS DENGAN MENGGUNAKAN ALGORITMA MULTILAYER PRECEPTRONen_US
dc.typeSkripsien_US


File In This Item

No Thumbnail
Name 75a2a4c5accb26e54985b443f04d0bf417351009.docx
Size 12895 Mb
Format application/vnd.openxmlformats-officedocument.wordprocessingml.document
Description peer_review
Peer Review

This item appears in the following Collection(s)

Skripsi [1615]

Show Simple Item Record