FINE TUNING CONVOLUTIONAL NEURAL NETWORK UNTUK MENDETEKSI PENYAKIT KANKER PAYUDARA

dc.contributor.authorNasution, Rosdiana
dc.date.accessioned2025-07-16
dc.date.available2025-07-16
dc.date.issued2024
dc.identifier.uri https://repositori.unhar.ac.id/handle/1509/fine-tuning-convolutional-neural-network-untuk-mendeteksi-penyakit-kanker-payudara
dc.description.abstract Breast cancer is a very important public health problem because mortality and morbidity tend to increase every year. This problem occurs because breast cancer is not detected early. Technology is needed to detect breast cancer early so as to reduce the risk of death in women, and increase life expectancy. Technology that can be used to recognize certain objects in detection requires data that represents the object to detect the disease in the form of digital images. The digital image is processed so that it can detect cancer. One method that can be used in digital image processing to detect cancer is using the artificial neural network method. One type of artificial neural network used is Convolutional Neural Networks (CNN). Therefore, this research will carry out Fine Tuning Convulation Neural Network using MobileNet architecture to detect breast cancer using the Adam, MSProp, SGD optimization function. And the results of this research will show the success rate of the SGD optimization function which has the best validation accuracy in detecting breast cancer. Key Word : Convolutional Neural Networks (CNN), MobileNet, Adam, MSProp, SGD. en_US
dc.language.isoenen_US
dc.publisherUniversitas Harapan Medanen_US
dc.subjectFINE TUNING CONVOLUTIONAL NEURAL NETWORK en_US
dc.titleFINE TUNING CONVOLUTIONAL NEURAL NETWORK UNTUK MENDETEKSI PENYAKIT KANKER PAYUDARAen_US
dc.typeSkripsien_US


File In This Item

No Thumbnail
Name f9edd464d3ec8056d42e48232d753769ROSDIANA NASUTION JSI.doc
Size 451584 Mb
Format application/msword
Description fulltext
Fulltext
No Thumbnail
Name f9edd464d3ec8056d42e48232d753769ROSDIANA NASUTION.docx
Size 1184557 Mb
Format application/vnd.openxmlformats-officedocument.wordprocessingml.document
Description peer_review
Peer Review

This item appears in the following Collection(s)

Skripsi [1593]

Show Simple Item Record