PENERAPAN ALGORITMA K-MEANS DAN NAÏVE BAYES DALAM MENGANALISA TINGKAT KEPUASAN MAHASISWA TERHADAP PELAYANAN KAMPUS

dc.contributor.authorNAIBAHO, JOHAN LEONARDO
dc.date.accessioned2025-07-16
dc.date.available2025-07-16
dc.date.issued2024
dc.identifier.uri https://repositori.unhar.ac.id/handle/1504/penerapan-algoritma-k-means-dan-naive-bayes-dalam-menganalisa-tingkat-kepuasan-mahasiswa-terhadap-pelayanan-kampus
dc.description.abstract This study aims to analyze the level of student satisfaction with campus services using two data mining algorithms, namely K-Means and Naive Bayes. K-Means algorithm is used to cluster students based on their satisfaction level, while Naive Bayes algorithm is used to predict student satisfaction level based on certain attributes such as facilities, academic services, and administrative support. The results of clustering with K-Means show that there are several main groups that describe different levels of satisfaction among students. Meanwhile, the prediction results with Naive Bayes showed a fairly high level of accuracy in classifying student satisfaction levels. Thus, the combination of these two algorithms can provide deep insights for campus management in improving service quality and student satisfaction. This research also provides recommendations for service improvement based on the findings from data analysis. Keyword : Data Mining,Algoritma K-means,Naïve Bayes,Classtering,Classification en_US
dc.language.isoenen_US
dc.publisherUniversitas Harapan Medanen_US
dc.subjectALGORITMA K-MEANS DAN NAÏVE BAYES en_US
dc.titlePENERAPAN ALGORITMA K-MEANS DAN NAÏVE BAYES DALAM MENGANALISA TINGKAT KEPUASAN MAHASISWA TERHADAP PELAYANAN KAMPUSen_US
dc.typeSkripsien_US


File In This Item

No Thumbnail
Name cac69f8f109aa601c3e92e8b30885efd126 LoA.pdf
Size 185385 Mb
Format application/pdf
Description fulltext
Fulltext
No Thumbnail
Name cac69f8f109aa601c3e92e8b30885efdJohan.docx
Size 3991419 Mb
Format application/vnd.openxmlformats-officedocument.wordprocessingml.document
Description peer_review
Peer Review

This item appears in the following Collection(s)

Skripsi [1593]

Show Simple Item Record